I Hero

CII National Award for Excellence in Energy Management-2023

Presenter : RG Mandan Vivek Pandey Ashish Meher

Table of Contents

R	него
---	------

P 2

него	Be the Future of Mobility Create Collaborate Inspire
08	• Employee Engagement
07	Green Supply Chain
06	Water & GHG Emission
05	 Renewable & Green Energy & Waste as Fuel
04	Innovative Ideas
03	• ENCON Projects(2019-23)
02	 Plant Energy Data
01	 Introduction & Energy Management

Hero MotoCorp

Plant, Offices, Dealer Locations & Global Presence

Hero is having 9000+ touch points across India. It includes plants, zonal offices, service center & mobile service. We have 6 manufacturing plants in India, 2 in overseas market & is present in 42 countries.

Hero

Gurgaon Plant

Introduction- Plant manufacturing Process

Него

Be the Future of Mobility

Него

Introduction- Energy Management cell & roles

I Hero

Dedicated Energy Management Cell and defined their roles & responsibilities.

I Hero

Be the Future of Mobility

Create | Collaborate | Inspire

Year wise Plant Energy consumption Trend

Hero

Bench Marking – Internal / National/ Global

Hero

Be the Future of Mobility

Create | Collaborate | Inspire

Strategic Approach @ Gurgaon Plant :

Hero

Strategy to reduce Specific energy Consumption by 10% in coming 2 years

Hero

Energy Conservation projects 2019-22

<u>Şr</u> No	Major Proj	or Project 2019-20		Energy Saving (Lacs Kwh	Cost Savin (Rs. In Lac	g Thermal s) Saving (in Kcal/ <u>Hr</u>) Re	marks			17 Lacs Kwh Saved from 15		
1	Installation of 150KWp	Roofto	p Solar PV	' system	n in Employee Bike parking shed	2.18	26.16						Major Energy Conservation
2	Replacement of 2 Nos.	Old Cor	npressor \	with En	ergy efficient IE4 Keaser Compressor	4.25	51.00						Projects
3	Centralized FDV Online	e Monit	oring & Co	ontrol S	ystem for plant	7.20	86.40		Innovati	ve Project-1			Trojects
4	Replacement of 11 Nos.	. Conver	ntional IE2	motor	s with IE4 motors in Utility area	0.47	5.66						
5	Replacement of convent	tional A	C with Ene	ergy eff	icient Inverter type ACs (14 Nos.)	0.72	8.60						
6 7	Replacement Of Solar D Solar All-In-One <u>Standlo</u>	Sr No	Energy	y Cor	Iservation projects 2020-21	- A 7	Projected Lacs KWH Saving/Year	Projected INR Saving/Year (in Lacs)	Thermal Savin (in KCal/day)	g Rei	narks		11 Lacs Kwh Saved from 14
8	Bio Methane Plant for C	1	Centralize Offsetting	ed Heat Electric	Pump System for Engine Assembly NGCT Washing Machine cal Heaters	es (3 Nos.) by	0.750	7.50		Innovative I	roject		Major Energy Conservation
0	Dealacement of HDI Lui	2	IE4 motor	based I	Energy Efficient Air Compressor in the Utility Area		2.550	25.50					Projects
10	CED Oven Heat Recover	3	Reductior Washing I	n of carb M/Cs	on footprint through Solar Thermal Collector system for A	l Phase	0.900	9.00	300,000	Renewable	Project		
11	Sludge Drying system fo Replacement of Filter Pr to 30% in ETP	4	Conventio House (1 Electrical	S No	Projects Descrip	ription 2021-22		Saving (in Lacs kWh) 2021-22	Annual Saving (in Rs Lacs)	Investmen (Rs. Lac)	Payback Period (month)		
13	Installation of STS for En	6	Replacem	1	Solar Plant Expansion (OBL Roof top	Area) 25	50 KW		2	19	100	63	14 E Lacs Kwh Saved from 1/
13	Interlocking of Lights of	7	Compress	2	Replacement of Old conventional spli Nos	t AC with	5 star rating	AC-15	0.5	4.75	13		Major Energy Conservation
14	Idle tripping Ckt for Engi	8	Installed .	3	Replacement of IE4 motors with conv	entional r	notors-1 lot		0.45	4.28	10		
15	Installation of Motion Se	9	Stopping	4	Replacement of DOL starters with Ne	w VFD F	anels for FD	V's-7 Nos	0.47	4.47	15	40	Projects
		10	HSD Fork	5	Controlling of Exhaust Blowers from I	DG House	e-1 lot		1.75	16.64	10	7	
		11	Occupano	6	Occupancy sensor for Lights-50 Nos				0.09	0.87	0.75	10	
		12	Replacem	7	Reduction in Running of HRU Circula control circuit & status through existin	tion moto g SCAD/	r by modifica A1 no.	ation in	0.24	2.28	2	11	
		13	Energy E	8	Reduction in running of 1 FDV in DG Ducting, (Operators Sitting Area)-1 m	House by os.	/ modificatio	n in	0.3	2.85	2	8	
		14	80 W BLI	9	Saving through Energy Management	System -	1 Lot		0.68	6.46	40	5	
				10	Replacement of Conventional Fans w	ith BLDC/	Fans		0.12	1.12	7	6	
				11	Saving through Resouse Conservation	on Team (RCT) Initiativ	/es	3.65	34.68	Ο	о	
				12	Stopping Auxiliarry Load after Comm	issioning	of 66 KV Su	labla	3.60	34.20	Ο	О	
				13	Localized capacitor panel for PF Cor	rection at	t Source(Utili	ty Section)	0.60	5.70	20	4	
				14	Centralized Heat Pump System for N Electrical Heaters.	EP Wash	ning M/Cs to	offset	0.36	3.42	10	3	
					Total				14.45	137.3	220	215	

1: него

Energy Conservation projects 2022-23

Zero Cost /Low Cost Projects

S No	Description	Saving (in Lacs	Annual Saving	Investment (Rs. Lac)	Payback Period
1	Occupancy sensor for Lights-30 Nos	0.09	0.75	0.75	10
2	Saving through Resource Conservation Team (RCT) Initiatives	5.29	43.40	0	0
2	Controlling of Non critical Circuit Breaker's of Substations from DG House SCADA	0.07	0.60	2	3
	PLC programe for Auto Start /Stop of Pre lube pump of MAN DG Sets	0.22	1.80	0.5	0
4	Duct Modification for Stopiing non required FDV unit	0.48	3.94	4	1
5	Cooling system shifting of compressor from water to air for partial load	2.40	19.68	4	0
6	HWG Circulation pump replaced with energy efficient pump.	0.45	3.69	2	1
7	Controlling the Hot Water Circulation of the HWG with the Help of VFD by Decreasing the Frequency of	0.36	2.95	6	2
8	Idle tripping circuits for Engine plant machines	0.45	3.69	5	1
	ab Cost Projecto	9.82	80.5	24.2	19

High Cost Projects

	S No			Description		Saving (in Lacs kWh)	Annual Saving (in Rs	Investme nt (Rs. Lac)	Payback Period (month)
	1	Replaceme	ent of Old conventional split AC wit	h 5 star rating AC in Executive cantee	n	0.2	1.64	10	48
FY			No.Projects	Saving (Lacs. KWH)	Saving (Rs.	Lacs)			
2019-20			15	17.4	242				
2020-21			14	10.6	106				
2021-22			14	14.5	137				
2022-23			16	27.2	220				
Н	ſO		Ro the Future of Mobility Create Collaborate Inspir						P 11

Energy Conservation projects 2023-24 Plan

				Expected sav		
SN	Area	Project / Task Description	No. Of days	Saving KWH/Day	Saving in Lacs KWH	Remarks
1	ESS-2	To reduce the energy losses of Distribution system by replacement of Transformer of ESS-2 (Energy Loss reduction).	365	150	0.5475	
2	NEP	To reduce the energy losses of M/C's by providing MCB's on Input of M/C's Stabilizers & switching off during C shift.	250	50	0.125	
3	ETP	Reduction of Electrical energy consumption by Installation of HWG thermal heating system in place of non efficient Sludge Drying M/C electric heater.	300	165	0.495	
4	Utility	To Reduce energy consumption (400 KWH/day) of Auxiliaries by providing air cooled radiator along with Cooling tower for air compressors & usage in C shift during winter from Nov-Feb	100	400	0.4	
5	Utility	To reduce Energy consumption (192 KWH/Day) by replacement of HWG Circulation pump one number with energy efficient pump.	200	192	0.384	
6	Chillers	To reduce the energy losses (750 KWH/Day) by shifting Chillers Shifting from DGH to above E/A & removal of 50 KW chiller pump.	200	750	1.5	
7	DG House	Reduce energy consumption by providing Centralized solar heating system on plant roof for drinking water in place of decentralized Electrical Geysers. (feasibility study)	150	800	1.2	
8	Plant	To reduce Energy losses (1700KWH/Day) by Energy Mapping of shops & identify energy conservation opportunities & implementing countermeasures to eliminate losses with the help of Resource Conservation Team.	300	1700	5.1	
9	Sub stations	Reduction of losses by Controlling of plant shop's panels ACB's from single point through Digitalization.(60 breaker auto control)	150	50	0.075	30 nos. converted for 15 nos. PO to be released in aug-23
10	Plant	Reduce energy consumption (100 KWH/Day) by Plant Split AC's replacement with 5 Star AC's 15 nos.	150	100	0.15	H2
11	Steel, Gear	Reduce energy consumption (100 KWH/day) by providing 35 nos of Solenoid valves on main headers of Compressed air line & switching off during non production time.	100	100	0.1	3 Nos. solenoids fixed in Gear Section & start closing in C shift
12	Utility	Reduce energy consumption (50 KWH/Day) by providing Solar charging stations for charging of Batteries of electrical Forklifts. (feasibility Study)	150	50	0.075	Н2
13	Plant	Reduce energy consumption (200 KWH/Day) by replacement of existing cabin fans with Efficient BLDC fans 300 nos	200	200	0.4	In Progress
14	Utility	Reduction in Energy consumption (100 KWH/Day) by Chiller's & AHU's monitoring & Controlling through digitalization.	150	100	0.15	H2
15	Steel, Gear	Energy consumption reduction (100 KWH/Day) by provision of BLDC Ceiling Fans in rest Area of operators in plant. (Removal of existing Almonard fans)	200	100	0.2	In PPC 3 Nos. almonard fans remove & BLDC Fans fixed
16	Utility	Reduction of fixed charges of 66kv CD from 9 MVA TO 8 MVA	365	0	19.8	H2
				4907	11.5	

Planned Projects with Expected Saving 4907 Kwh /Day.

I Hero

Major Energy Saving Projects Implemented (FY: 2022-23)

<u>1- Identification & Controlling of Energy Consumption of Significant Energy Usage</u> <u>Equipments</u>

S.No	Deptt.	Section	Equipment	Projects Description	Potential Saving (kwh/Yr.)	Investment (Lacs.)	ROI (Months)
1	Maint.	DG House	DG-1.9MW-AUX LOAD	PLC programe for Auto Start /Stop of Pre lube pump	18250	0.5	4
2	Maint.	DG House	GG-2MW-AUX LOAD	Solar Heating /Heat Pump for Jacket Water	52560	10	29
3	Maint.	DG House	FDV	Duct modification to stop 1 FDV unit	43125	0.2	1
4	Maint.	Utility	Air Compressor	Cooling tower ckt shifting to Air cooled	164250	4	4
5	Maint.	Utility	Hot Water Generator	Circulation pump replaced with energy efficient pump	45300	4	13
6	Engine plant	Heat Treatment	Cooling Tower	Development and installation of localized chiller for individual furnaces so that cooling tower need not be run for operation 01 or 02 furnaces.	82125	14	26
7	Engine plant	Aluminium Phase	SPM Machines	To remove/eliminate obsolete models/operations drive/spindle motors from SPM Machines.	18000	0.5	4.2
8	Frame Plant	Paint Shop	Lacquer ASU Supply Blower	Replacement of cove Maior IMP'S & KWH S	aving	40	12.3
			73				

Energy saved 11.5 Lacs Kwh /year

Completed in Nov23

Hero

Be the Future of Mobility

Create | Collaborate | Inspire

Него

Present Condition:-

- Utilities facility Data collection & Recording system is ineffective due to manual intervention
- Human work content is more on Data collection rather than analysis & predictive control due to which response for corrective action gets delayed
- Most of the existing meters are not communicable & obsoleted

Improvements Done/Kaizens done: -

Benefits/ Results:-

- Enhanced Data Transparency & Digital data display through Digitalization of processes
- Machine wise Energy Loss identifications
- C-shift KWh consumption optimization by switching of Busbar & M/Cs
- Shop wise SEC target setting
- Effective Energy Planning & Control

Energy Saving of 5.3 Lacs KWh/Annum achieved by Loss elimination through the "Utility Cockpit System"

Hero

3.Heat Pump System for Weld Shop Washing M/Cs:

Present Condition:-

- Electrical heaters is the primary source of heating for Coolant in Washing machines (4 Nos) installed in Weld shop area.
- To meet the thermal heat load demand of Washing machines alternate sustainable heat source is required.
- Electrical Heaters are considered as the most in-efficient mode of heating the coolant up to 60degC.

Methodology/Approach Adopted: -

- Horizontal deployment of the most energy efficient Compression type Heat Pump System having Cap: 60KW has been proposed to take care the electrical demand of Washing machines.
 - BTU Meters for Thermal Heat Monitoring
 - Real Time Monitoring of Electrical Heaters

Improvements Done/Kaizens done: -

Washing Machines Mapping@HM2G :

Area	Total Washing Machines (Nos)	Pending Washing Machines (Nos)	Primary Heating Source	Secondary Heat Source
Aluminium Phase	4	0	Solar Thermal + Heat Pump	Electrical Heaters
Engine Assy.	3	0	Heat Pump	Electrical Heaters
New Engine Plant	7	0	Heat Pump	Electrical Heaters
Weld Shop	4	0	Heat Pump	Electrical Heaters
Grand Total :	18	0		

Benefits/ Results:-

Energy Saving of 1.2 Lacs KWh/Annum achieved through offsetting of Electrical Heaters by Energy Efficient Heat Pump System of Washing machines

I Hero

4.Heat Exchanger System for Sludge Drying M/C in ETP:

Present Condition:-

- Electrical heater is the primary source of heating for Thermic Fluid in the Sludge Drying machine operations, which is installed in ETP area.
- To minimize this High Electrical load demand of Sludge Drying machine an alternate sustainable heat source is required to heat the Thermic Fluid up to 135 degC.

<u>Methodology/Approach Adopted: -</u>

- Replaced the Heat source from Electrical heaters to Hot Water Supply from NG fired Hot Water Generator (HWG) installed for MEE application.
- Plate Heat Exchanger installed along with Automatic valve controller to transfer the heat from MEE hot water pipeline to Thermic fluid of Sludge Drying machine.
 - **BTU Meters for Thermal Heat Monitoring**
 - Real Time Monitoring of Overall System

Improvements Done/Kaizens done: -

Energy Saving of 0.84 Lacs KWh/Annum achieved through offsetting of Electrical Heaters by NG fired Hot Water system for heating of Thermic fluid

I Hero

5. Automatic Power Factor Correction (APFC) Panels for Shop Floor Area:

Present Condition:-

- Power Factor in ESS varies from 0.6 to 0.8, which is considered as Very Poor.
- Very Poor Power Factor in ESS, results into higher internal current and the excessive heat generated will damage/ shorten equipment life span.
- Increased reactive loads can reduce output voltage and damage/ trip equipment's sensitive to reduced voltage.

<u>Methodology/Approach Adopted: -</u>

- > To make the Power Factor as 0.99 across the Plant premises.
- Reduce the reactive power by installation of Capacitor panels.

Improvements Done/Kaizens done: -

Benefits/ Results:-

Descriptions	Required	Existing Scenario (July22)	Proposed Scenario @0.99 PF					
Descriptions	KVAR	Existing Power Factor	Proposed Power	Cost Saving				
			Factor	(INR/Day)				
ULP 1 UTY	150	0.62	0.99	557				
ULP 2 UTY	150	0.66	0.99	700				
ULP 3 UTY	150	0.67	0.99	422				
ULP 4 UTY	150	0.69	0.99	586				
MDB-1A/3 CORE-1	150	0.75	0.99	108				
MDB-1A/4 CORE-1	150	0.82	0.99	77				
MDB-2A/3 AL NEW	150	0.84	0.99	83				
	₹ 2,533							
Grand	Grand Total Cost Saving/Yr: (303 Days)							

Energy Saving of 0.96 Lacs KWh/Annum achieved by optimizing the Power factor & subsequent Line loss reduction by installation of APFC panels in Shop floor areas.

6.BLDC Wall Fans for Office Floors:

Present Condition:-

- Conventional Wall Fan with Brushes used for Ventilation purpose in Office areas.
- There are nearly 400 Nos (approx.) wall mounted office fan installed inside plant premises.
- > High Power consumption (50 Watts) for conventional fan.

Methodology/Approach Adopted: -

- Horizontal deployment of the most Energy Efficient BLDC type wall mounted fans planned for replacement.
- > Phase-wise replacement planned for 400 Nos of Office fans.

Intangible Benefits: -

- > Double ball bearings for longer life and less noise.
- Smart remote operations with boost, sleep & timer mode.

Improvements Done/Kaizens done: -

Benefits/ Results:-

Power Consumptions for 400 Nos BLDC Fans (KWh/Yr)

Energy Saving of 9600 KWh/Annum achieved by replacing the Conventional wall mounted fans with the Energy Efficient BLDC type fans.

Hero

ENCON projects already Implemented-1

Glimpses of various ENCON projects implemented till FY 2022.

I Hero

Be the Future of Mobility

Create | Collaborate | Inspire

ENCON projects already Implemented-2

Glimpses of various ENCON projects implemented till FY 2021.

Hero

Be the Future of Mobility

Create | Collaborate | Inspire

Renewable & Green Energy

Hero

We have an installation capacity of 750KWp of Solar plant with an average annual power generation of 7.5 L KWh.

An additional 250KWp of Rooftop Solar plant was Installed in Yr 2021 above Employee Bike parking shed with having an annual power generation of nearly 2.4 L KWh.

Be the Future of Mobility

Create | Collaborate | Inspire

Него

Inverter wise Generation Data Monitoring for Optimum Generation from Solar

Real time inverter wise Data of Solar Generation available after connected all 24 invertors to EMS SCADA.

Solar Inverter wise Generation data integration with existing EMS SCADA. (24 Inverters integrated) Solar Invertor wise Data Integration with existing EMS: SOLAR PLANT 130 KWp 100 KWp 120 KWp 150 KWp 250 KWp 6 KWp OLD DESPATCH NEP PARKING NEW OBL TREE CORE-1 31 52 92 37 ARCTOR. 20720 GEN. 17.4 135 6.6 6553 .0V-1 0.0 0.0 INV-1 15.8 129 INV-1 23.2 190 0.0 0.0 18.0 145 5.8 INV-2 23.3 189 0.0 0.0 5.6 6553 0V-3 18.1 145 22.8 187 3.7 0.0 INV-4 0.0 0.0 22.8 18 6.1 6553 OV-6 6.1 INV-6 0.0 5.8 6553 0/V-7 0.0 0.0

Digitization of Roof top Solar PV plant for Better monitoring & Reduce down time

Hero

Waste as Fuel

1.CED Paint shop Oven Exhaust Waste Heat Recovery

Paint Sludge is generated in Paint shop from Painting Process.100% Sludge is sent to Cement industries to be used as fuel

100% Hazardous waste used as alternate fuel/raw material in Cement plants from July 2018. In Fy23 94 MT thinner recover from waste &358 MT paint sludge sent to paint industry.

I Hero

Sewage Effluent Management

Hero

Process Effluent Management

Capacity-600 KLD

Него

Water Resource Management System:

Objective : -

Zero Ground Water Abstraction

Implementation Strategy : -

- HUDA Water Supply Enhancement from 500KLD to 1000KLD ٠
- Ultra Filtration (UF) Plant for Drinking water supply

<u>Water Positive Strategy & Certification : -</u>

- Enhancement of RWHs from 21Nos to 34 Nos
- Recharge Rate @ 10 m3/hr .

34 Shaft of Rain Water harvesting systems Achieving 250 % of Recharging

Create | Collaborate | Inspire P26

Carbon Neutrality: HM2G Road Map

Него

132

120

108

96

64

57

40

5. Consider 5% growth of produc	tion volum	nes every year.		0 FY_	_18 FY_19	FY_20 FY_	21 FY_22	FY_23 FY_2	4 FY_25 FY	_26 FY_27	FY_28 FY_	_29 FY_30
Projects	Resp.	FY 18 FY 19 FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30
1. Expansion of Solar PV System in Plant. Capacity in KW.	Sanjeev		500			1500			2000			
2. Solar Power wheeling (Lac kWh/ year).			0			50	100	100	200	200	200	200
3. Afforestation Drive as HMCL (Lac trees)	CSR Team		23.8	25.8	35.8	45.0	55.0	65.0	75.0	85.0	95.0	105.0
4. Energy conservation projects in order to reduce specific power cons. (kWh/Veh.) 2% yearly.	B D Bhateja		29.6	29.0	28.4	27.8	27.3	26.7	26.2	25.7	25.2	24.7

HMCL Roadmap to become carbon neutral by 2030.

ero

Water Positive: HM2G Road Map

HM2G Water Positive (%) Water Positive (%) = $\frac{Total Rain Water Harvesting (KL))}{Total Fresh Water Consumption (KL)} * 100$ 600 521 Plan Actual Sustainable Development Goal: 500% Water Positive by 2025. 364 400 Strategy: 210 175 1. Reduce specific fresh water consumption (L/Veh) by 10% /year. 150172 200 2. Addition of rain water harvesting beyond the fence. 69 69 51 51 (FY 22=300%, FY 24=additional 150%) 38 38 35 35 3. Consider 5% growth of production volumes every year. Ω FY 18 FY 19 FY 20 FY 21 FY 22 FY 23 FY 24 FY 25 Projects FY 18 FY 21 FY 22 FY 23 FY 25 FY 19 FY 20 FY 24 Resp. 1. Community rain water drive through CSR with Sushil K 0 0 0 0 5.6 0 2.4 0 water harvesting potential (Lac KL). Pandey 2. Water conservation projects in order to

HMCL Roadmap to become Water Positive by 500% by 2025.

188

181

148

Hero

10%/ year.

reduce specific fresh water cons. (L/Veh) by

Be the Future of Mobility

198

B D Bhateja

134

120

108

97

1: него

Green Supply Chain Commitment

1: него

SPDP An Initiative by Hero for protecting and preservation of Environment

SPDP – Framework Green Initiatives

<u>* tCO2e Per Year – will be finalized for each SCP after baselining activity</u>

10. Renewable Energy (Solar Power Plant etc.)

* Reduction in tCO2e Per Year Range : XX

*tCO2e : Tonnes of CO2 equivalent - per SCP

Hero

Be the Future of Mobility

Create | Collaborate | Inspire

SPDP Target Setting – SCP ESG Journey

I Hero

*Categorization is based on the adoption of 6 S&G initiatives

Него

Be the Future of Mobility

Create | Collaborate | Inspire

Green Supply Chain Commitment

Него

Ac	Activity Plan - FY24											
S No	ТАЅК	Jul-23	Aug-23	Sep-23	Oct-23	Nov-23	Dec-23	Jan-24	Feb-24	Mar-24		
Base	ining of 128 SCPs - Carbon Emissions											
1	Preparation & finalization of CII Online Tool Kit for Emissions capturing											
2	SCPs training on CII's Tool Kit & sharing with 128 SCPs											
3	Follow-up with 128 SCPs & get the data filled on online toolkit											
4	SCP wise Metrics reporting on ESG - tCO2, Water, Waste, Gender Diversity, Sustainability framework & Governance etc.							Pr Jai	n 3rd Week			
5	SCP wise target setting on Metrices, Project identification											
6	FY25 Roadmap preparation for each SCPs (128) on achieving the Targets											

Hero

Gurgaon Plant

Happy Earth

Environmental sustainability

beyond compliance

Biggest Plantation drives – 23+ lacs

101500 trees plantation in

Gurgaon peripheral

Adoption and Revival of

Aravali Biodiversity Park

installed in villages

• 696 lakh liter water capacity

• Total 1458 Solar Street lights

developed through restoration

trees

1

2

Community Support

Key initiatives taken at Environment front, supporting under privileged girls and Education for Society

Hero

Create | Collaborate | Inspire

Hero

Monitoring & Controlling

CONCLUSION :- Establish Daily monitoring of Power Consumption through EMS. Dashboards developed in reports & Circulate to all owners through SCADA in auto mode Daily.

Hero

Hero

Monitoring & Controlling

Shopwise Data Reading & Analysis for optimum consumption sent on daily basis to all Stakeholders.

Hero

Be the Future of Mobility

Create | Collaborate | Inspire

Learning from CII Energy Awards

Guidance from Honorable CII Judges

- Methodology for deciding scope of Energy Conservation at section/line/machines
- Various Projects-EMS, Digitization
- Solar Thermal for Hot Water
- Benchmarking with National/Global Standards on Energy Consumption

How Green Co has supported us---

- Increased Share of Renewable Energy
- Methodology for Calculating SEC
- Approach for Carbon neutrality
- Mentoring Vendors for Green Co Certification

Our plant is Certified with EnMS ISO50001:2018 in Oct2022.

ISO50001:2018 Energy Management System

Certification- Oct'2022

Last of totheast or conditions as all successes in Contraction Agreement may make the Calificatio insolid ACCREDITED UNIT DRIVENEEDER Assurance & X. Zenheneng 1, 2014 UR, Resentants, Sectorization 1962, +27(2)/E2RDRIM, annualization and

I Hero

Hero

Thank You

